

FICHE DE DECLARATION ENVIRONNEMENTALE ET SANITAIRE DU PRODUIT

En conformité avec la norme EN 15804+A2 et son complément national NF EN 15804 + A2/CN En conformité avec la norme ISO 14025

Dalle en béton de chaux NHL 5 confectionné en centrale à béton

Chaux de Saint-Astier CSA

N° d'enregistrement : 20240236850 Date de publication : 04/03/2024

Version 1

Avertissement

Les informations contenues dans cette déclaration sont fournies sous la responsabilité de Chaux de Saint-Astier (CSA) selon l' EN 15804+A2 et le complément national NF EN 15804+A2/CN.

Toute exploitation, totale ou partielle, des informations fournies dans ce document doit au minimum être accompagnée de la référence complète à la FDES d'origine ainsi qu'à son producteur qui pourra remettre un exemplaire complet.

Il est rappelé que les résultats de l'étude sont fondés seulement sur des faits, circonstances et hypothèses qui ont été soumis au cours de l'étude. Si ces faits, circonstances et hypothèses diffèrent, les résultats sont susceptibles de changer.

De plus il convient de considérer les résultats de l'étude dans leur ensemble, au regard des hypothèses, et non pas pris individuellement.

La norme EN 15804+A2 du CEN sert de Règles de définition des catégories de produits (RCP) (Octobre 2019).

Guide de lecture

L'affichage des données d'inventaire respecte les exigences de la norme EN 15804+A2. Dans les tableaux suivants 2,53E-06 doit être lu : 2,53x10⁻⁶ (écriture scientifique).

Les unités utilisées sont précisées devant chaque flux, elles sont :

- le kilogramme « kg »,
- le gramme « g »,
- le litre « l »,
- le kilowattheure « kWh »,
- le mégajoule « MJ ».

Abréviations:

ACV : Analyse du Cycle de Vie
 DVR : Durée de Vie de Référence

- UF : Unité Fonctionnelle

- PCI : Pouvoir Calorifique Inférieur

Précaution d'utilisation de la FDES pour la comparaison des produits

Les FDES de produits de construction peuvent ne pas être comparables si elles ne sont pas conformes à la norme EN 15804+A2.

La norme EN 15804+A2 définie au § 5.3 Comparabilité des FDES pour les produits de construction, les conditions dans lesquelles les produits de construction peuvent être comparés, sur la base des informations fournies par la FDES : "Une comparaison de la performance environnementale des produits de construction en utilisant les informations des DEP doit être basée sur l'usage des produits et leurs impacts sur le bâtiment, et doit prendre en compte la totalité du cycle de vie (tous les modules d'informations)."

SOMMAIRE

ln	trod	uction	4
1	Ir	nformation Générale	5
	1.	Représentativité de la FDES	5
	2.	Référence commerciale	5
	3.	Type de FDES	5
	4.	Circuit de distribution	5
	5.	Date de fin de validité :	5
	6.	Vérification :	5
2	D	escription de l'unité fonctionnelle et du produit	6
	1.	Description de l'unité fonctionnelle :	6
	2.	Description du produit :	6
	3.	Performance principale de l'unité fonctionnelle :	6
	4.	Masses et données de base pour le calcul de l'unité fonctionnelle	6
	5.	Substances de la liste candidate selon le règlement REACH (si supérieur à 0,1% en masse)	7
	6.	Description de la durée de vie de référence (si applicable et conformément aux §7.2.2 de la EN 15804+A2).	7
3	Е	tapes du cycle de vie	8
	1.	Etape de production, A1-A3	9
	2.	Etape de construction A4-A5	9
	3.	Etape de vie en œuvre B1-B7	10
	4.	Etape de fin de vie C1-C4 :	11
	5.	Potentiel de recyclage/réutilisation/récupération, D	11
4	Ir	nformations pour le calcul de l'analyse de cycle de vie	12
5	R	ésultatS de l'analyse du cycle de vie	14
6 la		nformations additionnelles sur le relargage de substances dangereuses dans l'air intérieur, le sol et l'eau pen ode d'utilisation	
7	C	ontribution du produit à la qualité de vie à l'intérieur des bâtiments	23
RI	RUIC	GRAPHIE	23

INTRODUCTION

Le cadre utilisé pour la présentation de la déclaration environnementale produit est basé sur le complément national NF EN 15804 +A2/CN.

Cette fiche constitue un cadre adapté à la présentation des caractéristiques environnementales des produits de construction conformément aux exigences de la norme EN 15804+A2, son complément national NF EN 15804+A2/CN et à la fourniture de commentaires et d'informations complémentaires utiles dans le respect de l'esprit de cette norme en matière de sincérité et de transparence.

Les informations contenues dans cette déclaration sont fournies sous la responsabilité de Chaux de Saint-Astier (CSA), propriétaire de la déclaration. Cette déclaration est valide pour l'unique site de production de Chaux de CSA situé à Saint Astier (24).

La déclaration a été réalisée par :

contact : Marion Chirat (m.chirat@karibati.com).

Contact:

Laurent TEDESCHI Directeur technique

Coordonnées du contact : 05 53 54 11 25

l.tedeschi@saint-astier.com

Coordonnées de l'entreprise : Chaux de Saint Astier CSA 28 Bis Route de Montanceix - La Jarthe - 24 110 SAINT-ASTIER https://www.saint-astier.com/

1 INFORMATION GENERALE

1. Nom et adresse du déclarant

Le propriétaire de la déclaration est l'entreprise « Chaux de Saint Astier » situé : Lieu dit la Jarthe, 24110 Saint Astier.

2. Représentativité de la FDES

Cette FDES est valide pour les dalles en béton de chaux confectionné à partir de la chaux NHL 5 de l'entreprise Chaux de Saint-Astier située à Saint Astier (24).

3. Référence commerciale

Le béton de chaux est confectionné à partir de la chaux NHL 5 de Chaux de Saint-Astier sous l'appellation commerciale CHAUX PURE TRADI 100.

4. Type de FDES

Cette FDES individuelle couvre les étapes "du berceau à la tombe". Le module D est inclus.

5. Circuit de distribution

Cette FDES est destinée à une communication BtoB et/ou BtoC.

6. Date de fin de validité :

Cette FDES a été publiée en mars 2024 et est valable 5 ans.

7. Vérification :

Opérateur du programme : base INIES

http://www.inies.fr/

Depuis 2011, l'association HQE assure le rôle de propriétaire – gestionnaire de la base de données INIES. (Association HQE : 4, avenue du Recteur Poincaré 75016 PARIS).

Les normes NF EN 15804+A2 d'octobre 2019 et NF EN 15804+A2/CN d'octobre 2022 servent de RCP a

Vérification indépendante externe de la déclaration et des données, conformément à l'EN ISO 14025:2010.

Vérification par tierce partie b:

Mr. Clément Bolle Tél : +33 7 81857682

WeLOOP Email: c.bolle@weloop.org
254 rue du bourg Site web : www.weloop.org

59130 Lambersart , France

Numéro d'enregistrement au programme INIES : 20240236850

Date de 1^{ère} publication : 04/03/2024

^a Règles de définition des catégories de produits.

^b Facultatif pour la communication entre entreprises, obligatoire pour la communication entre une entreprise et ses clients (voir l'EN ISO 14025:2010, 9.4).

2 DESCRIPTION DE L'UNITE FONCTIONNELLE ET DU PRODUIT

1. Description de l'unité fonctionnelle :

« Assurer la fonction de dallage en béton de chaux NHL5 non porteur pour une épaisseur équivalente à 15 cm sur une surface horizontale de $1m^2$. Le produit à une durée de vie de 100 ans »

2. Description du produit :

Le produit étudié ici est un béton de chaux réalisé à partir de la chaux NHL 5 produite par Chaux de Saint-Astier.

Le béton de chaux désigne le mélange de la chaux avec du sable, des graviers et de l'eau.

3. Description de l'usage du produit

Le béton de chaux est non structurel et traditionnellement réalisé pour la réalisation de dallage, constitué de chaux NHL 5 (15 à 20 %) et d'agrégats 0/15 mm.

Les bétons naturels à la chaux NHL de Saint-Astier® sont mis en œuvre uniquement à l'intérieur des bâtiments. Cette technique s'applique plus spécifiquement à des travaux de restauration de bâtiments anciens ou à la construction de bâtiments à caractère écologique.

La carbonatation de la dalle de chaux dans le temps interdit la mise en place d'armatures métalliques ou de ferraillage.

Les bétons à la chaux NHL de Saint-Astier® ne font pas référence au NF DTU 26.2 « Chapes et Dalles à base de liants hydrauliques », il est donc important de respecter les prescriptions de mises en œuvre fournies par l'entreprise Chaux de Saint-Astier.

Pour plus d'informations, consulter <u>la documentation technique « Les bétons de chaux Saint-Astier®</u> et solutions de revêtements de sol »

4. Performance principale de l'unité fonctionnelle :

Le béton de chaux a une masse volumique d'environ 2000 kg/m³.

La résistance d'un dallage en béton de chaux est d'environ 3 à 4 MPa à 28 jours. Au contact de l'air et de l'humidité, cette résistance continue à progresser et peut doubler après seulement 4 mois.

5. Masses et données de base pour le calcul de l'unité fonctionnelle

Paramètre	Unités	Valeur
		Masse volumique : 2000 kg/m³
Quantité de produit	kg/UF	Liant : 52,83 kg Granulats 0/15 mm : 196,98

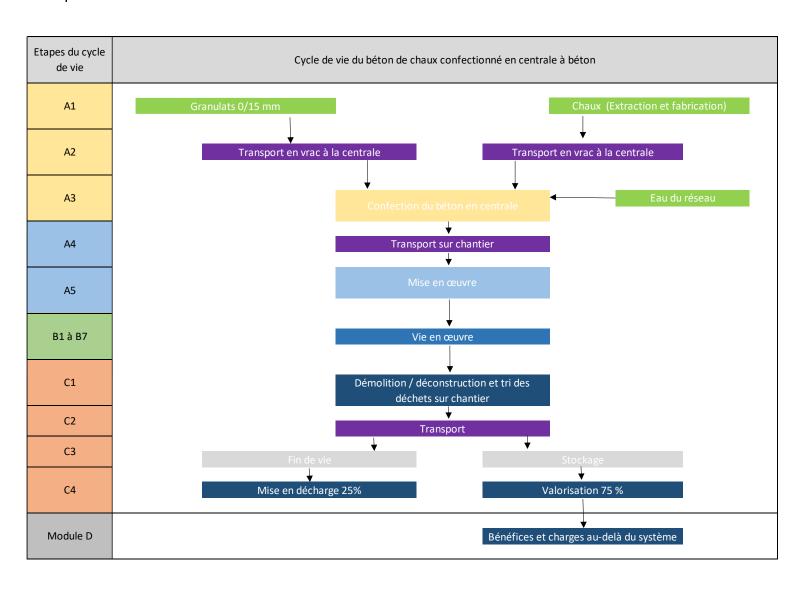
Quantité de produits complémentaires	kg/UF	Eau : 50,19
(lors de la mise en œuvre)	unité/UF	
Emballage de distribution	kg/UF	Le liant et les granulats sont livrés en vrac à la centrale.
Taux de chute lors de la mise en œuvre	%	<1%
Justification des informations fournies		Les informations sont fournies par Chaux de Saint-Astier (CSA)

6. Substances de la liste candidate selon le règlement REACH (si supérieur à 0,1% en masse)

Le produit ne contient pas de substances de la liste candidate selon le règlement REACH.

7. Description de la durée de vie de référence (si applicable et conformément aux §7.2.2 de la EN 15804+A2)

Paramètres	Valeurs
Durée de vie de référence	100 ans.
Propriétés déclarées du produit et finitions, etc.	Ces informations sont définies dans la norme de définition des produits ou leur documentation technique .
Paramètres théoriques d'application y compris références aux pratiques appropriées	Le béton de chaux doit être mis en œuvre
Qualité présumée des travaux lorsque l'installation est conforme aux instructions du fabricant	conformément aux prescriptions du fabricant. La qualité des travaux est présumée conforme aux
Environnement extérieur (pour les applications en extérieur)	recommandations du fabricant. Le produit peut être mis en œuvre partout en France
Environnement intérieur (pour les applications en intérieur)	métropolitaine en tenant compte des prescriptions du fabricant.
Conditions d'utilisation Maintenance	


8. Information sur la teneur carbone biogénique

Teneur en carbone biogénique	Unité	Valeurs
Teneur en carbone biogénique du produit (à la sortie d'usine)	kg.C/UF	0
Teneur en carbone biogénique de l'emballage associé (à la sortie	Kg.C/UF	0
d'usine)	Kg.C/UF	

3 ETAPES DU CYCLE DE VIE

Le cycle de vie du produit est présenté ci-dessous :

Etape de fabrication	-			E	Etape d	e vie er	n œuvre	e		Et	ape de	fin de vi	e	Bénéfices et charges au-delà des frontières du système
Production	Transport	Processus de construction / Installation	Usage	Maintenance	Réparation	Remplacement	Réhabilitation	Utilisation de l'énergie	Utilisation de l'eau	Déconstruction / Démolition	Transport	Traitement des déchets	Elimination	Possibilité de réutilisation, récupération, recyclage
A1 – A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ

1. Etape de production, A1-A3

MODULE A1: Matières premières

L'ensemble des matières premières et des transformations pour les constituants du béton de chaux sont pris en compte à cette étape.

- Extraction des pierres pour la fabrication de la chaux NHL 5 au sein des carrières de Chaux de Saint-Astier et fabrication de la chaux NHL5 sur le site de Chaux de Saint-Astier ;
- Extraction et production des granulats 0/15 mm pour la confection du béton.

MODULE A2: Transports des matières premières

Les transports des matières premières pris en compte à cette étape sont :

- Pour la chaux NHL5 : transport en vrac en camion jusqu'à la centrale ;
- Pour les granulats : transport en barge pour approvisionnement des dépôts puis en camion jusqu'à la centrale ;

MODULE A3: Fabrication

A cette étape s'effectue la confection du béton à base de chaux NHL 5 en centrale. La centrale à béton sert à préparer le béton dit « Prêt à l'emploi ». Les étapes en centrale sont les suivantes :

- Réception et stockage des différents composants du béton
- Dosage des composants.
- Malaxage des composants.
- Chargement du matériel de transport du béton (camion-toupie).

La modélisation de la fabrication intègre les données sources réelles, telles que les consommations énergétiques, les consommables, les produits de maintenance, ainsi que la production de déchets destinés à un traitement ou une valorisation. Tous les transports associés ont été comptabilisés.

2. Etape de construction A4-A5

Module A4: Transport jusqu'au chantier

Le béton confectionné en centrale est acheminé en camion-toupie jusqu'au chantier

Pour l'approvisionnement direct sur chantier :

Paramètre	Valeur
Type de véhicule pour le transport du béton	Camion 32 T EURO 6
Distance de livraison depuis la centrale	30 km

Module A5: Mise en œuvre

Le béton de chaux confectionné en centrale est ensuite mis en œuvre directement sur le chantier sur un support préalablement préparé selon les dispositions de <u>la documentation technique « Les bétons de chaux</u> Saint-Astier® et solutions de revêtements de sol » .

Le support (hérisson ventilé) n'est pas inclus dans l'étude.

La mise en œuvre se fait au moyen :

- soit d'un camion toupie tapis jusqu'à 16m
- soit d'un camion malaxeur pompe si contraintes d'accès

Paramètre	Valeur	
Consommation d'eau pour la mise en œuvre	0	
Pertes à l'étape de mise en œuvre	2,5%	
Consommation et type d'énergie pour la mise	Diesel (immobilisation du camion toupie) :49,4 MJ/	
en œuvre	m3 soit 7,41 MJ/m²	
Déchets d'emballage des produits à l'étape de	Pas de déchets d'emballage.	
mise en œuvre	r as ac accricts a cribaliage.	
Emissions directes dans l'air ambiant, le sol et l'eau	Aucune	

3. Etape de vie en œuvre B1-B7

Module B1: Usage

Le produit n'a pas d'impact sur cette étape car durant la vie en œuvre, aucun entretien n'est nécessaire.

En revanche on compte que pendant sa vie en œuvre, le béton de chaux va se carbonater. Le dioxyde de carbone présent dans l'atmosphère pénètre dans le béton à partir de la surface du matériau. Il s'agit d'un processus chimique par lequel le dioxyde de carbone de l'air ambiant réagit avec le CaO réactif contenu dans le béton de chaux.

La quantité absorbée est liée à la quantité de CaO réactif présent dans le béton. Elle est calculée conformément aux recommandations de la norme NF EN 16757 (Juin 2017) « Contribution des ouvrages de construction au développement durable — Déclarations environnementales sur les produits — Règles régissant la catégorie de produits pour le béton et les éléments en béton ».

L'annexe BB.7 précise que « Si d'autres taux de carbonatation et degrés de carbonatation, déterminés et consignés selon des méthodes scientifiques, sont disponibles pour une région, un pays ou un produit, leurs valeurs pourront être utilisées pour le calcul de l'absorption de CO2. Les références doivent être fournies.»

Le degré de carbonatation pour la chaux est pris à 75% pour mieux prendre en compte ce phénomène pour la chaux.

Dans le cas de cette FDES, le béton de chaux étudié, la résistance du béton est inférieure à 15 MPa et ce béton est destiné à des bâtiments.

Le facteur k retenu ici est de 16,5 (bâtiment, utilisation en intérieur, sans revêtement) soit :

- En phase B1 : = -15,8 kg CO2 /m² (facteur k= 16,5 et degré de carbonatation considéré à 75% pendant la vie en œuvre)
- En phase C3: approche conservatrice (5kg/m3) soit dans notre cas dalle de 15 cm = -0,75 kg CO2/m²
- En phase C4 : 25% du béton mis en décharge, la carbonatation est calculée à -1,32 kg CO2/m²

Modules B2 à B7 : Maintenance / réparation / remplacement / réhabilitation / utilisation de l'énergie / utilisation de l'éau

Dans les conditions normales d'utilisation, le béton de chaux ne nécessite pas d'opération de réparation, de maintenance, ni d'utilisation d'eau ou d'énergie au cours de son cycle de vie.

4. Etape de fin de vie C1-C4 :

Avant de procéder au traitement du produit en fin de vie, il faut au préalable le récupérer au sein du bâtiment. Cette opération est réalisée à l'aide d'outils de type « burineur» en cas de démolition.La quantité d'énergie électrique associées à cette méthode est intégrée à l'étude.

Le scénario choisi pour le traitement en fin de vie est celui utilisé par la filière béton pour les bétons prêt à l'emploi (source BETIE¹) :

Mise en décharge : 25 %Valorisation : 75 %

Le scénario de valorisation du béton de chaux arrivé en fin de vie est détaillé dans la partie « 3.5. Potentiel de recyclage/réutilisation/récupération, D ».

Paramètre	Unités	Valeur/description
Quantité collectée séparément	kg	300
Quantité collectée avec des déchets de construction mélangés	kg	0
Quantité destinée à la réutilisation	%	0
Quantité destinée au recyclage	%	75
Quantité destinée à la récupération d'énergie	%	0
Quantité de produit mise en décharge	%	25
Distance de transport jusqu'au site d'incinération	km	0
Distance de transport jusqu'à la décharge	km	30
Distance de transport jusqu'au centre de tri pour réutilisation	km	50

5. Potentiel de recyclage/réutilisation/récupération, D

¹ Empreinte Carbone du Béton - SNBPE

Des bénéfices et charges au-delà des frontières du système sont pris en compte car la produit est en partie valorisé.

Matières/matériaux valorisés sortants des frontières du système	Processus de recyclage au delà des frontières du système	Matières/matériaux/énergie économisés	Quantités associés
Béton de chaux concassé	Remblais routiers	Graviers	75% soit pour la dalle épaisseur 15 cm , 225 kg

4 INFORMATIONS POUR LE CALCUL DE L'ANALYSE DE CYCLE DE VIE

PCR utilisé	EN 15804+A2 et NF EN 15804+A2/CN.
Règle de coupure	La règle de coupure utilisée dans cette FDES est celle définie dans la norme EN 15804+A2.
Frontières du système	Les frontières du système respectent les limites imposées par la norme EN 15804+A2 et son complément national NF EN 15804 + A2/CN. Les flux non pris en compte sont : - La construction des usines de transformation, y compris les machines de fabrications; - Le nettoyage des ateliers ; - Les consommations d'électricité des départements administratifs ; - Le transport des employés jusqu'au site de production ;
Allocations	Pas d'allocation sur le site de Saint Astier car il y a une ligne industrielle dédiée à la fabrication de la chaux NHL5. Les allocations pour la fin de vie des déchets d'emballage (papier kraft) suivent un scénario français issu des données Ecoinvent. Le scénario pour les palettes suit le scénario défini par le CODIFAB en 2022 pour le bois. Les autres allocations issues de la base de données restent intactes.
Qualité des principales données utilisées pour la réalisation de l'ICV – Données spécifiques	L'évaluation de la qualité des principales données spécifiques montre une majorité de données avec la notation moyenne « très bonne » ou « bonne ». Quelques données ont reçu une notation moyenne « moyenne ».
Qualité des principales données utilisées pour la réalisation de l'ICV – Données génériques	Les données génériques ont reçu une notation moyenne « bonne ».
Représentativité géographique et représentativité temporelle des données primaires	Logiciels utilisés : SimaPro S logiciel d'analyse de cycle de vie (V9.3). Le produit en question est un produit français, destiné au marché français, et est représentatif des bétons de chaux français. Les données primaires ont été collectées en 2021-2022 auprès de Chaux de Saint-Astier. Un an a été pris en compte pour les données d'ICV de la Chaux NHL5. Les données secondaires sont issues de la base de données Ecoinvent v3.8 (2021). L'ICV de la Chaux NHL 5, datant de fin 2022 et modélisé au format de la norme NF

	EN 15804+A1, a été utilisé sous forme d'inventaire (format CSV) pour être utilisé dans cette modélisation EN 15804+A2.
	Aucune donnée n'a été oubliée.
Variabilité des résultats	Sans objet

5 RESULTATS DE L'ANALYSE DU CYCLE DE VIE

Ci-après, les tableaux qui synthétisent les résultats de l'ACV.

En raison des arrondis les totaux peuvent ne pas correspondre à la somme des arrondis.

Pour les indicateurs énergétiques utilisés en tant que matière première : une valeur négative correspond au changement d'utilisation passant de matières premières à combustible (en cas d'incinération par exemple). Application de l'Annexe I de la NF EN 15804+A2/CN.

	Etape	de fabrio	ation	Etape o				Etape	de vie en	œuvre				Etape de	fin de vie		iarges tières
Impacts environnementaux	A1 Extraction des matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	C1 Déconstruction /démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	D Bénéfices et charges au-delà des frontières du système
Réchauffement climatique kg CO ₂ eq/UF	2,44E+01	2,71E+00	4,68E-01	8,03E-01	6,97E-01	-1,58E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,12E-01	2,39E+00	1,54E-01	-2,15E-01	-1,03E+00
Réchauffement climatique – Combustibles fossiles kg CO ₂ eq/UF	2,44E+01	2,71E+00	4,68E-01	8,02E-01	6,97E-01	-1,58E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,99E-01	2,38E+00	1,54E-01	-2,16E-01	-1,02E+00
Réchauffement climatique - biogénique kg CO ₂ eq/UF	-1,36E-02	2,97E-03	-1,48E-03	8,14E-04	2,63E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,20E-02	2,31E-03	3,19E-04	8,83E-04	-1,48E-02
Réchauffement climatique – occupation des sols et transfo. de l'occupation des sols kg CO ₂ eq/UF	1,90E-03	2,00E-03	6,79E-04	3,01E-04	8,08E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,30E-04	8,56E-04	9,02E-05	5,11E-04	-3,87E-04
Appauvrissement de la couche d'ozone kg CFC 11 eq/UF	3,90E-07	6,35E-07	5,22E-08	2,00E-07	1,51E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,32E-08	5,69E-07	1,93E-07	2,09E-07	-2,19E-07
Acidification mol H ⁺ eq/UF	2,40E-02	1,15E-02	4,51E-03	2,56E-03	7,21E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,92E-03	9,94E-03	9,39E-03	5,11E-03	-7,53E-03

| Eutrophisation, eaux douces
kg P eq/UF | 6,36E-04 | 2,46E-05 | 2,33E-05 | 5,72E-06 | 2,44E-06 | 0,00E+00 | 1,51E-05 | 1,63E-05 | 3,00E-06 | 7,14E-06 | -5,85E-06 |
|--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| Eutrophisation aquatique
marine
kg N eq/UF | 7,44E-03 | 3,29E-03 | 5,36E-04 | 5,62E-04 | 3,18E-03 | 0,00E+00 | 5,52E-04 | 3,00E-03 | 4,16E-03 | 1,78E-03 | -2,79E-03 |
| Eutrophisation terrestre
mol N eq/UF | 8,72E-02 | 3,63E-02 | 6,84E-03 | 6,25E-03 | 3,49E-02 | 0,00E+00 | 5,73E-03 | 3,32E-02 | 4,56E-02 | 1,96E-02 | -3,18E-02 |
| Formation d'ozone
photochimique
kg NMVOC eq/UF | 2,27E-02 | 1,19E-02 | 2,08E-03 | 2,46E-03 | 9,59E-03 | 0,00E+00 | 1,57E-03 | 1,07E-02 | 1,25E-02 | 5,67E-03 | -8,71E-03 |
| Epuisement des ressources
abiotiques – combustibles
fossiles
MJ/UF | 1,45E+02 | 4,27E+01 | 1,52E+01 | 1,31E+01 | 9,71E+00 | 0,00E+00 | 8,66E+01 | 3,71E+01 | 1,24E+01 | 1,45E+01 | -1,59E+01 |
| Épuisement des ressources
abiotiques –
minéraux et métaux
kg Sb eq/UF | 1,39E-05 | 1,05E-05 | 5,87E-05 | 1,92E-06 | 3,94E-07 | 0,00E+00 | 5,95E-06 | 5,46E-06 | 4,65E-07 | 1,73E-06 | -9,43E-06 |
| Besoin en eau
m3 depriv./UF | 1,70E+00 | 1,81E-01 | 2,49E+00 | 4,49E-02 | 2,74E-02 | 0,00E+00 | 2,05E-01 | 1,28E-01 | 1,94E-02 | 5,12E-01 | -5,00E-01 |

	Etape	e de fabrio	cation	-	de mise euvre			Etape	de vie en	œuvre				Etape de	fin de vie		es au- s du
Impacts environnementaux	A1 Extraction des matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	C1 Déconstruction /démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	D Bénéfices et charges audelà des frontières du système
Emissions de particules fines Indice de maladies/UF	2,93E-07	2,76E-07	3,60E-08	9,30E-08	1,92E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,46E-08	2,80E-07	1,92E-06	9,89E-08	-1,72E-07
Rayonnements ionisants, santé humaine kBq U-235 eq/UF	3,50E-01	1,83E-01	1,15E-01	5,66E-02	4,13E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,77E-01	1,61E-01	5,28E-02	6,11E-02	-1,06E-01
Ecotoxicité (eaux douces) CTUe/UF	1,93E+02	3,58E+01	2,78E+01	1,02E+01	5,72E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,89E+01	2,90E+01	7,26E+00	9,86E+00	-1,52E+01
Toxicité humaine, effets cancérigènes CTUh/UF	2,20E-09	1,31E-09	1,45E-09	2,78E-10	2,19E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,64E-10	8,02E-10	2,81E-10	3,11E-10	-9,18E-10
Toxicité humaine, effets non cancérigènes CTUh/UF	6,12E-08	3,58E-08	3,85E-08	1,07E-08	4,16E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,08E-09	3,17E-08	5,26E-09	7,76E-09	-1,59E-08
Impacts liés à l'occupation des sols/Qualité du sol Pt/UF	3,86E+01	4,57E+01	9,91E+00	1,49E+01	1,84E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,63E+00	4,25E+01	1,58E+00	2,60E+01	-2,27E+01

	Etape	de fabrio	ation	Etape o en œ				Etape (de vie en	œuvre				Etape de	fin de vie		et à des stème
Utilisation des ressources	A1 Extraction des matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de I'énergie	B7 Utilisation de l'eau	C1 Déconstruction /démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	D Bénéfices et charges au-delà des frontières du système
Utilisation de l'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelables utilisées comme matières premières	3,87E+00	6,59E-01	1,53E+00	1,66E-01	5,72E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,98E+00	4,73E-01	6,97E-02	1,87E-01	-2,50E+00
Utilisation des ressources d'énergie primaire renouvelables en tant que matières premières MJ PCI/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation totale des ressources d'énergie primaire renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières) MJ PCI/UF	3,87E+00	6,59E-01	1,53E+00	1,66E-01	5,72E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,98E+00	4,73E-01	6,97E-02	1,87E-01	-2,50E+00
Utilisation de l'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelables utilisées comme matières premières	1,97E+02	4,34E+01	1,64E+01	1,31E+01	9,67E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,79E+01	3,74E+01	1,23E+01	1,47E+01	-1,61E+01
Utilisation des ressources d'énergie primaire non renouvelables en tant que matières premières MJ PCI/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

| Utilisation totale des ressources d'énergie primaire non renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières) MJ PCI/UF | 1,97E+02 | 4,34E+01 | 1,64E+01 | 1,31E+01 | 9,67E+00 | 0,00E+00 | 8,79E+01 | 3,74E+01 | 1,23E+01 | 1,47E+01 | -1,61E+01 |
|--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| Utilisation de matière
secondaire
kg/UF | 0,00E+00 |
| Utilisation de combustibles
secondaires renouvelables
MJ PCI/UF | 0,00E+00 |
| Utilisation de combustibles
secondaires non
renouvelables
MJ PCI/UF | 0,00E+00 |
| Utilisation nette d'eau douce m³/UF | 3,03E-01 | 5,58E-03 | 6,08E-02 | 1,41E-03 | 7,01E-04 | 0,00E+00 | 2,46E-02 | 4,00E-03 | 5,25E-04 | 1,22E-02 | -3,22E-01 |

	Etape	de fabrio	ation	Etape o en œ				Etape	de vie en	œuvre				Etape de	fin de vie		es au- s du
Catégories de déchets	A1 Extraction des matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	C1 Déconstruction /démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	D Bénéfices et charges delà des frontières d système
Déchets dangereux éliminés kg/UF	7,24E-02	4,31E-02	5,87E-02	9,03E-03	7,69E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,72E-02	2,57E-02	9,83E-03	1,15E-02	-3,40E-02
Déchets non dangereux éliminés kg/UF	6,31E+00	3,76E+00	1,90E+00	1,29E+00	1,92E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,18E-01	3,66E+00	5,17E-02	7,53E+01	-8,69E-01
Déchets radioactifs éliminés kg/UF	4,57E-04	2,83E-04	1,48E-04	8,84E-05	6,69E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,15E-03	2,51E-04	8,56E-05	9,55E-05	-1,17E-04

	Etape	de fabrio	cation	•	de mise euvre			Etape (de vie en	œuvre				Etape de	fin de vie		es au- s du
Flux sortants	A1 Extraction des matières premières	A2 Transport	A3 Fabrication	A4 Transport	A5 Installation	B1 Usage	B2 Maintenance	B3 Réparation	B4 Remplacement	B5 Réhabilitation	B6 Utilisation de l'énergie	B7 Utilisation de l'eau	C1 Déconstruction /démolition	C2 Transport	C3 Traitement des déchets	C4 Elimination	D Bénéfices et charges delà des frontières di système
Composants destinés à la réutilisation kg/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matériaux destinés au recyclage kg/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,25E+02	0,00E+00	0,00E+00

| ı | récupéra | ux destinés à la
ation d'énergie
kg/UF | 0,00E+00 | |
|---|--|--|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| | à l'extérieur
nergétique)
JF | Electricité | 0,00E+00 | |
| | fournie à l'e
scteur énerg
MJ/UF | Vapeur | 0,00E+00 | |
| | Energie f
(par vec | Gaz de process | 0,00E+00 | |

Catégorie d'impact / flux	Unité	Total Fabrication	Total Mise en œuvre	Total Vie en œuvre	Total Fin de vie	Total Cycle de vie
Réchauffement climatique	kg CO₂ eq/UF	2,76E+01	1,50E+00	-1,58E+01	2,94E+00	1,62E+01
Réchauffement climatique – combustibles fossiles	kg CO₂ eq/UF	2,76E+01	1,50E+00	-1,58E+01	2,92E+00	1,62E+01
Réchauffement climatique – biogénique	kg CO₂ eq/UF	-1,21E-02	1,08E-03	0,00E+00	1,55E-02	4,49E-03
Réchauffement climatique – occupation des sols et transformation de l'occupation des sols	kg CO₂ eq/UF	4,58E-03	3,82E-04	0,00E+00	1,79E-03	6,75E-03
Appauvrissement de la couche d'ozone	kg CFC11 eq/UF	1,08E-06	3,51E-07	0,00E+00	1,03E-06	2,46E-06
Acidification	mol H+ eq/UF	4,00E-02	9,76E-03	0,00E+00	2,74E-02	7,71E-02
Eutrophisation aquatique, eaux douces	kg P eq/UF	6,84E-04	8,16E-06	0,00E+00	4,16E-05	7,33E-04
Eutrophisation aquatique marine	kg N eq/UF	1,13E-02	3,74E-03	0,00E+00	9,49E-03	2,45E-02
Eutrophisation tererstre	mol N eq/UF	1,30E-01	4,11E-02	0,00E+00	1,04E-01	2,76E-01
Formation d'ozone photochimique	kg NMVOC eq/UF	3,67E-02	1,21E-02	0,00E+00	3,04E-02	7,92E-02
Epuisement des ressources abiotiques – minéraux et métaux	kg Sb eq/UF	2,03E+02	2,28E+01	0,00E+00	1,51E+02	3,77E+02
Epuisement des ressources abiotiques – combustibles fossiles	MJ PCI/UF	8,32E-05	2,31E-06	0,00E+00	1,36E-05	9,91E-05
Besoin en eau	m³ depriv.∙/UF	4,37E+00	7,23E-02	0,00E+00	8,64E-01	5,31E+00
Emissions de particules fines	Indice de maladies/UF	6,05E-07	2,85E-07	0,00E+00	2,32E-06	3,21E-06
Rayonnements ionisants, santé humaine	kBq U-235 eq/UF	6,48E-01	9,80E-02	0,00E+00	1,15E+00	1,90E+00
Exotoxicité (eaux douces)	CTUe/UF	2,56E+02	1,59E+01	0,00E+00	6,50E+01	3,37E+02
Toxicité humaine, effets cancérigènes	CTUh/UF	4,96E-09	4,97E-10	0,00E+00	1,76E-09	7,21E-09
Toxicité humaine, effets non cancérigènes	CTUh/UF	1,35E-07	1,49E-08	0,00E+00	5,18E-08	2,02E-07
Impacts liés à l'occupation des sols/Qualité du sol	MJ PCI/UF	9,42E+01	1,68E+01	0,00E+00	7,27E+01	1,84E+02
Utilisation de l'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelables utilisées comme matières premières	MJ PCI/UF	6,05E+00	2,23E-01	0,00E+00	6,71E+00	1,30E+01
Utilisation des ressources d'énergie primaire renouvelables en tant que matières premières	MJ PCI/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation totale des ressources d'énergie primaire renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières)	MJ PCI/UF	6,05E+00	2,23E-01	0,00E+00	6,71E+00	1,30E+01
Utilisation de l'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelables utilisées comme matières premières	MJ PCI/UF	2,57E+02	2,28E+01	0,00E+00	1,52E+02	4,32E+02
Utilisation des ressources d'énergie primaire non renouvelables en tant que matières premières	MJ PCI/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation totale des ressources d'énergie primaire non renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières)	MJ PCI/UF	2,57E+02	2,28E+01	0,00E+00	1,52E+02	4,32E+02

Utilisation de matière secondaire	kg/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires renouvelables	MJ PCI/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires non renouvelables	MJ PCI/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation nette d'eau douce	m³/UF	3,69E-01	2,11E-03	0,00E+00	4,14E-02	4,13E-01
Déchets dangereux éliminés	kg/UF	1,74E-01	1,67E-02	0,00E+00	7,42E-02	2,65E-01
Déchets non dangereux éliminés	kg/UF	1,20E+01	3,21E+00	0,00E+00	7,93E+01	9,45E+01
Déchets radioactifs éliminés	kg/UF	8,88E-04	1,55E-04	0,00E+00	1,58E-03	2,63E-03
Composants destinés à la réutilisation	kg/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matériaux destinés au recyclage	kg/UF	0,00E+00	0,00E+00	0,00E+00	2,25E+02	2,25E+02
Matériaux destinés à la récupération d'énergie	kg/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Energie fournie à l'extérieure (électricité)	MJ/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Energie fournie à l'extérieure (vapeur)	MJ/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Energie fournie à l'extérieure (gaz)	MJ/UF	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

6 INFORMATIONS ADDITIONNELLES SUR LE RELARGAGE DE SUBSTANCES DANGEREUSES DANS L'AIR INTERIEUR, LE SOL ET L'EAU PENDANT LA PERIODE D'UTILISATION

Air intérieur :

Le produit n'est pas en contact direct avec l'air intérieur. La chaux utilisée pour la confection du béton bénéficie du label Excell+.

Sol et eau:

Sans objet car ce produit n'est en contact ni avec l'eau destinée à la consommation humaine, ni avec les eaux de ruissellement, les eaux d'infiltration, la nappe phréatique, ni encore avec les eaux de surface.

7 CONTRIBUTION DU PRODUIT A LA QUALITE DE VIE A L'INTERIEUR DES BATIMENTS

Caractéristiques du produit participant à la création des conditions de <u>confort hygrothermique</u> dans le bâtiment :

La mise en œuvre de béton de chaux est une technique traditionnellement utilisée dans le bâti ancien. Sa mise en œuvre selon les prescriptions de l'entreprise Chaux de Saint-Astier concoure à une meilleure gestion de l'humidité dans le bâti.

Caractéristiques du produit participant à la création des conditions de <u>confort acoustique</u> dans le bâtiment : Pas d'essais réalisés.

Caractéristiques du produit participant à la création des conditions de <u>confort visuel</u> dans le bâtiment : Le produit n'est pas visible dans le bâtiment. Les finitions intérieures et extérieures sont laissées au choix du maitre d'œuvre.

Caractéristiques du produit participant à la création des conditions de <u>confort olfactif</u> dans le bâtiment : Le produit est inodore.

BIBLIOGRAPHIE

Cette FDES a notamment été réalisée à partir des documents normatifs suivants :

- AFNOR, Norme NF EN ISO 14040, Analyse du cycle de vie / Principes et cadre, Octobre 2006 ;
- AFNOR, Norme NF EN ISO 14044, Analyse du cycle de vie / Exigences et lignes directrices, Octobre 2006;
- AFNOR, Norme EN 15804 +A2, Contribution des ouvrages de construction au développement durable Déclarations environnementales sur les produits Règles régissant les catégories de produits de construction, Avril 2014 ;
- AFNOR, Norme NF EN 15804 +A2/CN, Contribution des ouvrages de construction au développement durable Déclarations environnementales sur les produits Règles régissant les catégories de produits de construction Complément national à la EN 15804+A2, Octobre 2022 ;

Un rapport d'accompagnement décrivant la modélisation et ses principales hypothèses a été présenté avec la FDES pour la vérification.

